11 research outputs found

    Visual attention in primates and for machines - neuronal mechanisms

    Get PDF
    Visual attention is an important cognitive concept for the daily life of humans, but still not fully understood. Due to this, it is also rarely utilized in computer vision systems. However, understanding visual attention is challenging as it has many and seemingly-different aspects, both at neuronal and behavioral level. Thus, it is very hard to give a uniform explanation of visual attention that can account for all aspects. To tackle this problem, this thesis has the goal to identify a common set of neuronal mechanisms, which underlie both neuronal and behavioral aspects. The mechanisms are simulated by neuro-computational models, thus, resulting in a single modeling approach to explain a wide range of phenomena at once. In the thesis, the chosen aspects are multiple neurophysiological effects, real-world object localization, and a visual masking paradigm (OSM). In each of the considered fields, the work also advances the current state-of-the-art to better understand this aspect of attention itself. The three chosen aspects highlight that the approach can account for crucial neurophysiological, functional, and behavioral properties, thus the mechanisms might constitute the general neuronal substrate of visual attention in the cortex. As outlook, our work provides for computer vision a deeper understanding and a concrete prototype of attention to incorporate this crucial aspect of human perception in future systems.:1. General introduction 2. The state-of-the-art in modeling visual attention 3. Microcircuit model of attention 4. Object localization with a model of visual attention 5. Object substitution masking 6. General conclusionVisuelle Aufmerksamkeit ist ein wichtiges kognitives Konzept für das tägliche Leben des Menschen. Es ist aber immer noch nicht komplett verstanden, so dass es ein langjähriges Ziel der Neurowissenschaften ist, das Phänomen grundlegend zu durchdringen. Gleichzeitig wird es aufgrund des mangelnden Verständnisses nur selten in maschinellen Sehsystemen in der Informatik eingesetzt. Das Verständnis von visueller Aufmerksamkeit ist jedoch eine komplexe Herausforderung, da Aufmerksamkeit äußerst vielfältige und scheinbar unterschiedliche Aspekte besitzt. Sie verändert multipel sowohl die neuronalen Feuerraten als auch das menschliche Verhalten. Daher ist es sehr schwierig, eine einheitliche Erklärung von visueller Aufmerksamkeit zu finden, welche für alle Aspekte gleichermaßen gilt. Um dieses Problem anzugehen, hat diese Arbeit das Ziel, einen gemeinsamen Satz neuronaler Mechanismen zu identifizieren, welche sowohl den neuronalen als auch den verhaltenstechnischen Aspekten zugrunde liegen. Die Mechanismen werden in neuro-computationalen Modellen simuliert, wodurch ein einzelnes Modellierungsframework entsteht, welches zum ersten Mal viele und verschiedenste Phänomene von visueller Aufmerksamkeit auf einmal erklären kann. Als Aspekte wurden in dieser Dissertation multiple neurophysiologische Effekte, Realwelt Objektlokalisation und ein visuelles Maskierungsparadigma (OSM) gewählt. In jedem dieser betrachteten Felder wird gleichzeitig der State-of-the-Art verbessert, um auch diesen Teilbereich von Aufmerksamkeit selbst besser zu verstehen. Die drei gewählten Gebiete zeigen, dass der Ansatz grundlegende neurophysiologische, funktionale und verhaltensbezogene Eigenschaften von visueller Aufmerksamkeit erklären kann. Da die gefundenen Mechanismen somit ausreichend sind, das Phänomen so umfassend zu erklären, könnten die Mechanismen vielleicht sogar das essentielle neuronale Substrat von visueller Aufmerksamkeit im Cortex darstellen. Für die Informatik stellt die Arbeit damit ein tiefergehendes Verständnis von visueller Aufmerksamkeit dar. Darüber hinaus liefert das Framework mit seinen neuronalen Mechanismen sogar eine Referenzimplementierung um Aufmerksamkeit in zukünftige Systeme integrieren zu können. Aufmerksamkeit könnte laut der vorliegenden Forschung sehr nützlich für diese sein, da es im Gehirn eine Aufgabenspezifische Optimierung des visuellen Systems bereitstellt. Dieser Aspekt menschlicher Wahrnehmung fehlt meist in den aktuellen, starken Computervisionssystemen, so dass eine Integration in aktuelle Systeme deren Leistung sprunghaft erhöhen und eine neue Klasse definieren dürfte.:1. General introduction 2. The state-of-the-art in modeling visual attention 3. Microcircuit model of attention 4. Object localization with a model of visual attention 5. Object substitution masking 6. General conclusio

    Object Recognition and Visual Search with a Physiologically Grounded Model of Visual Attention

    Get PDF
    Visual attention models can explain a rich set of physiological data (Reynolds & Heeger, 2009, Neuron), but can rarely link these findings to real-world tasks. Here, we would like to narrow this gap with a novel, physiologically grounded model of visual attention by demonstrating its objects recognition abilities in noisy scenes. To base the model on physiological data, we used a recently developed microcircuit model of visual attention (Beuth & Hamker, in revision, Vision Res) which explains a large set of attention experiments, e.g. biased competition, modulation of contrast response functions, tuning curves, and surround suppression. Objects are represented by object-view specific neurons, learned via a trace learning approach (Antonelli et al., 2014, IEEE TAMD). A visual cortex model combines the microcircuit with neuroanatomical properties like top-down attentional processing, hierarchical-increasing receptive field sizes, and synaptic transmission delays. The visual cortex model is complemented by a model of the frontal eye field (Zirnsak et al., 2011, Eur J Neurosci). We evaluated the model on a realistic object recognition task in which a given target has to be localized in a scene (guided visual search task), using 100 different target objects, 1000 scenes, and two backgrounds. The model achieves an accuracy of 92% at black, and of 71% at white-noise backgrounds. We found that two of the underlying, neuronal attention mechanisms are prominently relevant for guided visual search: amplification of neurons preferring the target; and suppression of neurons encoding distractors or background noise

    Learning Object Representations for Modeling Attention in Real World Scenes

    Get PDF
    Models of visual attention have been rarely used in real world tasks as they have been typically developed for psychophysical setups using simple stimuli. Thus, the question remains how objects must be represented to allow such models an operation in real world scenarios. We have previously presented an attention model capable of operating on real-world scenes (Beuth, F., and Hamker, F. H. 2015, NCNC, which is a successor of Hamker, F. H., 2005, Cerebral Cortex), and show here how its object representations have been learned. We have used a learning rule based on temporal continuity (Földiák, P., 1991, Neural Computation) to ensure biological plausibility. Yet, temporal continuity learning rules have not been used in a real world context, thus, we conducted an improvement: We increased the postsynaptic threshold to make the learning more specific, resulting in object-encoding cells reacting mainly specific for their preferred objects. Furthermore, we present a novelty in relation to Beuth, F. and Hamker, F. H., 2015: the learning of object representation invariant towards the background. It is currently unknown how such representations are learned by the human brain. Suggestions have been made to use disparity or motion, whereas we propose temporal continuity learning. This principle learns connections from presynaptic features which are stable over time. As the object changes much less than the background over time, strong connections are primarily learned to the object and no connections to the background. Such learned representations allow the attention model to identify and locate objects in real world scenes

    A hierarchical system for a distributed representation of the peripersonal space of a humanoid robot

    Get PDF
    Reaching a target object in an unknown and unstructured environment is easily performed by human beings. However, designing a humanoid robot that executes the same task requires the implementation of complex abilities, such as identifying the target in the visual field, estimating its spatial location, and precisely driving the motors of the arm to reach it. While research usually tackles the development of such abilities singularly, in this work we integrate a number of computational models into a unified framework, and demonstrate in a humanoid torso the feasibility of an integrated working representation of its peripersonal space. To achieve this goal, we propose a cognitive architecture that connects several models inspired by neural circuits of the visual, frontal and posterior parietal cortices of the brain. The outcome of the integration process is a system that allows the robot to create its internal model and its representation of the surrounding space by interacting with the environment directly, through a mutual adaptation of perception and action. The robot is eventually capable of executing a set of tasks, such as recognizing, gazing and reaching target objects, which can work separately or cooperate for supporting more structured and effective behaviors

    Visual attention in primates and for machines - neuronal mechanisms

    No full text
    Visual attention is an important cognitive concept for the daily life of humans, but still not fully understood. Due to this, it is also rarely utilized in computer vision systems. However, understanding visual attention is challenging as it has many and seemingly-different aspects, both at neuronal and behavioral level. Thus, it is very hard to give a uniform explanation of visual attention that can account for all aspects. To tackle this problem, this thesis has the goal to identify a common set of neuronal mechanisms, which underlie both neuronal and behavioral aspects. The mechanisms are simulated by neuro-computational models, thus, resulting in a single modeling approach to explain a wide range of phenomena at once. In the thesis, the chosen aspects are multiple neurophysiological effects, real-world object localization, and a visual masking paradigm (OSM). In each of the considered fields, the work also advances the current state-of-the-art to better understand this aspect of attention itself. The three chosen aspects highlight that the approach can account for crucial neurophysiological, functional, and behavioral properties, thus the mechanisms might constitute the general neuronal substrate of visual attention in the cortex. As outlook, our work provides for computer vision a deeper understanding and a concrete prototype of attention to incorporate this crucial aspect of human perception in future systems.:1. General introduction 2. The state-of-the-art in modeling visual attention 3. Microcircuit model of attention 4. Object localization with a model of visual attention 5. Object substitution masking 6. General conclusionVisuelle Aufmerksamkeit ist ein wichtiges kognitives Konzept für das tägliche Leben des Menschen. Es ist aber immer noch nicht komplett verstanden, so dass es ein langjähriges Ziel der Neurowissenschaften ist, das Phänomen grundlegend zu durchdringen. Gleichzeitig wird es aufgrund des mangelnden Verständnisses nur selten in maschinellen Sehsystemen in der Informatik eingesetzt. Das Verständnis von visueller Aufmerksamkeit ist jedoch eine komplexe Herausforderung, da Aufmerksamkeit äußerst vielfältige und scheinbar unterschiedliche Aspekte besitzt. Sie verändert multipel sowohl die neuronalen Feuerraten als auch das menschliche Verhalten. Daher ist es sehr schwierig, eine einheitliche Erklärung von visueller Aufmerksamkeit zu finden, welche für alle Aspekte gleichermaßen gilt. Um dieses Problem anzugehen, hat diese Arbeit das Ziel, einen gemeinsamen Satz neuronaler Mechanismen zu identifizieren, welche sowohl den neuronalen als auch den verhaltenstechnischen Aspekten zugrunde liegen. Die Mechanismen werden in neuro-computationalen Modellen simuliert, wodurch ein einzelnes Modellierungsframework entsteht, welches zum ersten Mal viele und verschiedenste Phänomene von visueller Aufmerksamkeit auf einmal erklären kann. Als Aspekte wurden in dieser Dissertation multiple neurophysiologische Effekte, Realwelt Objektlokalisation und ein visuelles Maskierungsparadigma (OSM) gewählt. In jedem dieser betrachteten Felder wird gleichzeitig der State-of-the-Art verbessert, um auch diesen Teilbereich von Aufmerksamkeit selbst besser zu verstehen. Die drei gewählten Gebiete zeigen, dass der Ansatz grundlegende neurophysiologische, funktionale und verhaltensbezogene Eigenschaften von visueller Aufmerksamkeit erklären kann. Da die gefundenen Mechanismen somit ausreichend sind, das Phänomen so umfassend zu erklären, könnten die Mechanismen vielleicht sogar das essentielle neuronale Substrat von visueller Aufmerksamkeit im Cortex darstellen. Für die Informatik stellt die Arbeit damit ein tiefergehendes Verständnis von visueller Aufmerksamkeit dar. Darüber hinaus liefert das Framework mit seinen neuronalen Mechanismen sogar eine Referenzimplementierung um Aufmerksamkeit in zukünftige Systeme integrieren zu können. Aufmerksamkeit könnte laut der vorliegenden Forschung sehr nützlich für diese sein, da es im Gehirn eine Aufgabenspezifische Optimierung des visuellen Systems bereitstellt. Dieser Aspekt menschlicher Wahrnehmung fehlt meist in den aktuellen, starken Computervisionssystemen, so dass eine Integration in aktuelle Systeme deren Leistung sprunghaft erhöhen und eine neue Klasse definieren dürfte.:1. General introduction 2. The state-of-the-art in modeling visual attention 3. Microcircuit model of attention 4. Object localization with a model of visual attention 5. Object substitution masking 6. General conclusio

    Visual attention in primates and for machines - neuronal mechanisms

    No full text
    Visual attention is an important cognitive concept for the daily life of humans, but still not fully understood. Due to this, it is also rarely utilized in computer vision systems. However, understanding visual attention is challenging as it has many and seemingly-different aspects, both at neuronal and behavioral level. Thus, it is very hard to give a uniform explanation of visual attention that can account for all aspects. To tackle this problem, this thesis has the goal to identify a common set of neuronal mechanisms, which underlie both neuronal and behavioral aspects. The mechanisms are simulated by neuro-computational models, thus, resulting in a single modeling approach to explain a wide range of phenomena at once. In the thesis, the chosen aspects are multiple neurophysiological effects, real-world object localization, and a visual masking paradigm (OSM). In each of the considered fields, the work also advances the current state-of-the-art to better understand this aspect of attention itself. The three chosen aspects highlight that the approach can account for crucial neurophysiological, functional, and behavioral properties, thus the mechanisms might constitute the general neuronal substrate of visual attention in the cortex. As outlook, our work provides for computer vision a deeper understanding and a concrete prototype of attention to incorporate this crucial aspect of human perception in future systems.:1. General introduction 2. The state-of-the-art in modeling visual attention 3. Microcircuit model of attention 4. Object localization with a model of visual attention 5. Object substitution masking 6. General conclusionVisuelle Aufmerksamkeit ist ein wichtiges kognitives Konzept für das tägliche Leben des Menschen. Es ist aber immer noch nicht komplett verstanden, so dass es ein langjähriges Ziel der Neurowissenschaften ist, das Phänomen grundlegend zu durchdringen. Gleichzeitig wird es aufgrund des mangelnden Verständnisses nur selten in maschinellen Sehsystemen in der Informatik eingesetzt. Das Verständnis von visueller Aufmerksamkeit ist jedoch eine komplexe Herausforderung, da Aufmerksamkeit äußerst vielfältige und scheinbar unterschiedliche Aspekte besitzt. Sie verändert multipel sowohl die neuronalen Feuerraten als auch das menschliche Verhalten. Daher ist es sehr schwierig, eine einheitliche Erklärung von visueller Aufmerksamkeit zu finden, welche für alle Aspekte gleichermaßen gilt. Um dieses Problem anzugehen, hat diese Arbeit das Ziel, einen gemeinsamen Satz neuronaler Mechanismen zu identifizieren, welche sowohl den neuronalen als auch den verhaltenstechnischen Aspekten zugrunde liegen. Die Mechanismen werden in neuro-computationalen Modellen simuliert, wodurch ein einzelnes Modellierungsframework entsteht, welches zum ersten Mal viele und verschiedenste Phänomene von visueller Aufmerksamkeit auf einmal erklären kann. Als Aspekte wurden in dieser Dissertation multiple neurophysiologische Effekte, Realwelt Objektlokalisation und ein visuelles Maskierungsparadigma (OSM) gewählt. In jedem dieser betrachteten Felder wird gleichzeitig der State-of-the-Art verbessert, um auch diesen Teilbereich von Aufmerksamkeit selbst besser zu verstehen. Die drei gewählten Gebiete zeigen, dass der Ansatz grundlegende neurophysiologische, funktionale und verhaltensbezogene Eigenschaften von visueller Aufmerksamkeit erklären kann. Da die gefundenen Mechanismen somit ausreichend sind, das Phänomen so umfassend zu erklären, könnten die Mechanismen vielleicht sogar das essentielle neuronale Substrat von visueller Aufmerksamkeit im Cortex darstellen. Für die Informatik stellt die Arbeit damit ein tiefergehendes Verständnis von visueller Aufmerksamkeit dar. Darüber hinaus liefert das Framework mit seinen neuronalen Mechanismen sogar eine Referenzimplementierung um Aufmerksamkeit in zukünftige Systeme integrieren zu können. Aufmerksamkeit könnte laut der vorliegenden Forschung sehr nützlich für diese sein, da es im Gehirn eine Aufgabenspezifische Optimierung des visuellen Systems bereitstellt. Dieser Aspekt menschlicher Wahrnehmung fehlt meist in den aktuellen, starken Computervisionssystemen, so dass eine Integration in aktuelle Systeme deren Leistung sprunghaft erhöhen und eine neue Klasse definieren dürfte.:1. General introduction 2. The state-of-the-art in modeling visual attention 3. Microcircuit model of attention 4. Object localization with a model of visual attention 5. Object substitution masking 6. General conclusio

    How Visual Attention and Suppression Facilitate Object Recognition?

    No full text
    Abstract. Visual attention can support object recognition by selecting the relevant target information in the huge amount of sensory data, especially important in scenes composed of multiple objects. Here we demonstrate how attention in a biologically plausible and neuro-computational model of visual perception facilitates object recognition in a robotic real world scenario. We will point out that it is not only important to select the target information, but rather to explicitly suppress the distracting sensory data. We found that suppressing the features of each distractor is not sufficient to achieve robust recognition. Instead, we also have to suppress the location of each distractor. To demonstrate the effect of this spatial suppression, we disable this property and show that the recognition accuracy drops. By this, we show the interplay between attention and suppression in a real world object recognition task

    Visual Acuity Prediction on Real-Life Patient Data Using a Machine Learning Based Multistage System

    Full text link
    In ophthalmology, intravitreal operative medication therapy (IVOM) is widespread treatment for diseases such as the age-related macular degeneration (AMD), the diabetic macular edema (DME), as well as the retinal vein occlusion (RVO). However, in real-world settings, patients often suffer from loss of vision on time scales of years despite therapy, whereas the prediction of the visual acuity (VA) and the earliest possible detection of deterioration under real-life conditions is challenging due to heterogeneous and incomplete data. In this contribution, we present a workflow for the development of a research-compatible data corpus fusing different IT systems of the department of ophthalmology of a German maximum care hospital. The extensive data corpus allows predictive statements of the expected progression of a patient and his or her VA in each of the three diseases. Within our proposed multistage system, we classify the VA progression into the three groups of therapy "winners", "stabilizers", and "losers" (WSL scheme). Our OCT biomarker classification using an ensemble of deep neural networks results in a classification accuracy (F1-score) of over 98 %, enabling us to complete incomplete OCT documentations while allowing us to exploit them for a more precise VA modelling process. Our VA prediction requires at least four VA examinations and optionally OCT biomarkers from the same time period to predict the VA progression within a forecasted time frame. While achieving a prediction accuracy of up to 69 % (macro average F1-score) when considering all three WSL-based progression groups, this corresponds to an improvement by 11 % in comparison to our ophthalmic expertise (58 %).Comment: Work in progress Scientific Reports preprin
    corecore